324 lines
16 KiB
Python
324 lines
16 KiB
Python
import argparse
|
|
|
|
import os
|
|
# limit the number of cpus used by high performance libraries
|
|
os.environ["OMP_NUM_THREADS"] = "1"
|
|
os.environ["OPENBLAS_NUM_THREADS"] = "1"
|
|
os.environ["MKL_NUM_THREADS"] = "1"
|
|
os.environ["VECLIB_MAXIMUM_THREADS"] = "1"
|
|
os.environ["NUMEXPR_NUM_THREADS"] = "1"
|
|
|
|
import sys
|
|
import numpy as np
|
|
from pathlib import Path
|
|
import torch
|
|
import torch.backends.cudnn as cudnn
|
|
|
|
FILE = Path(__file__).resolve()
|
|
ROOT = FILE.parents[0] # yolov5 strongsort root directory
|
|
WEIGHTS = ROOT / 'weights'
|
|
|
|
if str(ROOT) not in sys.path:
|
|
sys.path.append(str(ROOT)) # add ROOT to PATH
|
|
if str(ROOT / 'yolov5') not in sys.path:
|
|
sys.path.append(str(ROOT / 'yolov5')) # add yolov5 ROOT to PATH
|
|
if str(ROOT / 'strong_sort') not in sys.path:
|
|
sys.path.append(str(ROOT / 'strong_sort')) # add strong_sort ROOT to PATH
|
|
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
|
|
|
import logging
|
|
from yolov5.models.common import DetectMultiBackend
|
|
from yolov5.utils.dataloaders import VID_FORMATS, LoadImages, LoadStreams
|
|
from yolov5.utils.general import (LOGGER, check_img_size, non_max_suppression, scale_boxes, check_requirements, cv2,
|
|
check_imshow, xyxy2xywh, increment_path, strip_optimizer, colorstr, print_args, check_file)
|
|
from yolov5.utils.torch_utils import select_device, time_sync
|
|
from yolov5.utils.plots import Annotator, colors, save_one_box
|
|
from strong_sort.utils.parser import get_config
|
|
from strong_sort.strong_sort import StrongSORT
|
|
|
|
# remove duplicated stream handler to avoid duplicated logging
|
|
# logging.getLogger().removeHandler(logging.getLogger().handlers[0])
|
|
|
|
@torch.no_grad()
|
|
def run(
|
|
source='0',
|
|
yolo_weights=WEIGHTS / 'yolov5m.pt', # model.pt path(s),
|
|
strong_sort_weights=WEIGHTS / 'osnet_x0_25_msmt17.pt', # model.pt path,
|
|
config_strongsort=ROOT / 'strong_sort/configs/strong_sort.yaml',
|
|
imgsz=(640, 640), # inference size (height, width)
|
|
conf_thres=0.25, # confidence threshold
|
|
iou_thres=0.45, # NMS IOU threshold
|
|
max_det=1000, # maximum detections per image
|
|
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
|
show_vid=False, # show results
|
|
save_txt=False, # save results to *.txt
|
|
save_conf=False, # save confidences in --save-txt labels
|
|
save_crop=False, # save cropped prediction boxes
|
|
save_vid=False, # save confidences in --save-txt labels
|
|
nosave=False, # do not save images/videos
|
|
classes=None, # filter by class: --class 0, or --class 0 2 3
|
|
agnostic_nms=False, # class-agnostic NMS
|
|
augment=False, # augmented inference
|
|
visualize=False, # visualize features
|
|
update=False, # update all models
|
|
project=ROOT / 'runs/track', # save results to project/name
|
|
name='exp', # save results to project/name
|
|
exist_ok=False, # existing project/name ok, do not increment
|
|
line_thickness=3, # bounding box thickness (pixels)
|
|
hide_labels=False, # hide labels
|
|
hide_conf=False, # hide confidences
|
|
hide_class=False, # hide IDs
|
|
half=False, # use FP16 half-precision inference
|
|
dnn=False, # use OpenCV DNN for ONNX inference
|
|
):
|
|
|
|
source = str(source)
|
|
save_img = not nosave and not source.endswith('.txt') # save inference images
|
|
is_file = Path(source).suffix[1:] in (VID_FORMATS)
|
|
is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
|
|
webcam = source.isnumeric() or source.endswith('.txt') or (is_url and not is_file)
|
|
if is_url and is_file:
|
|
source = check_file(source) # download
|
|
|
|
# Directories
|
|
if not isinstance(yolo_weights, list): # single yolo model
|
|
exp_name = yolo_weights.stem
|
|
elif type(yolo_weights) is list and len(yolo_weights) == 1: # single models after --yolo_weights
|
|
exp_name = Path(yolo_weights[0]).stem
|
|
else: # multiple models after --yolo_weights
|
|
exp_name = 'ensemble'
|
|
exp_name = name if name else exp_name + "_" + strong_sort_weights.stem
|
|
save_dir = increment_path(Path(project) / exp_name, exist_ok=exist_ok) # increment run
|
|
(save_dir / 'tracks' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
|
|
|
|
# Load model
|
|
device = select_device(device)
|
|
model = DetectMultiBackend(yolo_weights, device=device, dnn=dnn, data=None, fp16=half)
|
|
stride, names, pt = model.stride, model.names, model.pt
|
|
imgsz = check_img_size(imgsz, s=stride) # check image size
|
|
|
|
# Dataloader
|
|
if webcam:
|
|
show_vid = check_imshow()
|
|
cudnn.benchmark = True # set True to speed up constant image size inference
|
|
dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt)
|
|
nr_sources = len(dataset)
|
|
else:
|
|
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt)
|
|
nr_sources = 1
|
|
vid_path, vid_writer, txt_path = [None] * nr_sources, [None] * nr_sources, [None] * nr_sources
|
|
|
|
# initialize StrongSORT
|
|
cfg = get_config()
|
|
cfg.merge_from_file(opt.config_strongsort)
|
|
|
|
# Create as many strong sort instances as there are video sources
|
|
strongsort_list = []
|
|
for i in range(nr_sources):
|
|
strongsort_list.append(
|
|
StrongSORT(
|
|
strong_sort_weights,
|
|
device,
|
|
max_dist=cfg.STRONGSORT.MAX_DIST,
|
|
max_iou_distance=cfg.STRONGSORT.MAX_IOU_DISTANCE,
|
|
max_age=cfg.STRONGSORT.MAX_AGE,
|
|
n_init=cfg.STRONGSORT.N_INIT,
|
|
nn_budget=cfg.STRONGSORT.NN_BUDGET,
|
|
mc_lambda=cfg.STRONGSORT.MC_LAMBDA,
|
|
ema_alpha=cfg.STRONGSORT.EMA_ALPHA,
|
|
|
|
)
|
|
)
|
|
outputs = [None] * nr_sources
|
|
|
|
|
|
|
|
# Run tracking
|
|
model.warmup(imgsz=(1 if pt else nr_sources, 3, *imgsz)) # warmup
|
|
dt, seen = [0.0, 0.0, 0.0, 0.0], 0
|
|
print('nr_sources', nr_sources)
|
|
curr_frames, prev_frames = [None] * nr_sources, [None] * nr_sources
|
|
for frame_idx, (path, im, im0s, vid_cap, s) in enumerate(dataset):
|
|
t1 = time_sync()
|
|
im = torch.from_numpy(im).to(device)
|
|
im = im.half() if half else im.float() # uint8 to fp16/32
|
|
im /= 255.0 # 0 - 255 to 0.0 - 1.0
|
|
if len(im.shape) == 3:
|
|
im = im[None] # expand for batch dim
|
|
t2 = time_sync()
|
|
dt[0] += t2 - t1
|
|
|
|
# Inference
|
|
visualize = increment_path(save_dir / Path(path[0]).stem, mkdir=True) if visualize else False
|
|
pred = model(im, augment=augment, visualize=visualize)
|
|
t3 = time_sync()
|
|
dt[1] += t3 - t2
|
|
|
|
# Apply NMS
|
|
pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
|
|
dt[2] += time_sync() - t3
|
|
|
|
# Process detections
|
|
for i, det in enumerate(pred): # detections per image
|
|
seen += 1
|
|
if webcam: # nr_sources >= 1
|
|
p, im0, _ = path[i], im0s[i].copy(), dataset.count
|
|
p = Path(p) # to Path
|
|
s += f'{i}: '
|
|
txt_file_name = p.name
|
|
save_path = str(save_dir / p.name) # im.jpg, vid.mp4, ...
|
|
else:
|
|
p, im0, _ = path, im0s.copy(), getattr(dataset, 'frame', 0)
|
|
p = Path(p) # to Path
|
|
# video file
|
|
if source.endswith(VID_FORMATS):
|
|
txt_file_name = p.stem
|
|
save_path = str(save_dir / p.name) # im.jpg, vid.mp4, ...
|
|
# folder with imgs
|
|
else:
|
|
txt_file_name = p.parent.name # get folder name containing current img
|
|
save_path = str(save_dir / p.parent.name) # im.jpg, vid.mp4, ...
|
|
curr_frames[i] = im0
|
|
|
|
txt_path = str(save_dir / 'tracks' / txt_file_name) # im.txt
|
|
s += '%gx%g ' % im.shape[2:] # print string
|
|
imc = im0.copy() if save_crop else im0 # for save_crop
|
|
|
|
annotator = Annotator(im0, line_width=2, pil=not ascii)
|
|
if cfg.STRONGSORT.ECC: # camera motion compensation
|
|
strongsort_list[i].tracker.camera_update(prev_frames[i], curr_frames[i])
|
|
|
|
if det is not None and len(det):
|
|
# Rescale boxes from img_size to im0 size
|
|
det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()
|
|
|
|
# Print results
|
|
for c in det[:, -1].unique():
|
|
n = (det[:, -1] == c).sum() # detections per class
|
|
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
|
|
|
|
xywhs = xyxy2xywh(det[:, 0:4])
|
|
confs = det[:, 4]
|
|
clss = det[:, 5]
|
|
|
|
# pass detections to strongsort
|
|
t4 = time_sync()
|
|
outputs[i] = strongsort_list[i].update(xywhs.cpu(), confs.cpu(), clss.cpu(), im0)
|
|
t5 = time_sync()
|
|
dt[3] += t5 - t4
|
|
|
|
# draw boxes for visualization
|
|
if len(outputs[i]) > 0:
|
|
for j, (output, conf) in enumerate(zip(outputs[i], confs)):
|
|
|
|
bboxes = output[0:4]
|
|
id = output[4]
|
|
cls = output[5]
|
|
|
|
if save_txt:
|
|
# to MOT format
|
|
bbox_left = output[0]
|
|
bbox_top = output[1]
|
|
bbox_w = output[2] - output[0]
|
|
bbox_h = output[3] - output[1]
|
|
# Write MOT compliant results to file
|
|
with open(txt_path + '.txt', 'a') as f:
|
|
f.write(('%g ' * 10 + '\n') % (frame_idx + 1, id, bbox_left, # MOT format
|
|
bbox_top, bbox_w, bbox_h, -1, -1, -1, i))
|
|
|
|
if save_vid or save_crop or show_vid: # Add bbox to image
|
|
c = int(cls) # integer class
|
|
id = int(id) # integer id
|
|
label = None if hide_labels else (f'{id} {names[c]}' if hide_conf else \
|
|
(f'{id} {conf:.2f}' if hide_class else f'{id} {names[c]} {conf:.2f}'))
|
|
annotator.box_label(bboxes, label, color=colors(c, True))
|
|
if save_crop:
|
|
txt_file_name = txt_file_name if (isinstance(path, list) and len(path) > 1) else ''
|
|
save_one_box(bboxes, imc, file=save_dir / 'crops' / txt_file_name / names[c] / f'{id}' / f'{p.stem}.jpg', BGR=True)
|
|
|
|
LOGGER.info(f'{s}Done. YOLO:({t3 - t2:.3f}s), StrongSORT:({t5 - t4:.3f}s)')
|
|
|
|
else:
|
|
strongsort_list[i].increment_ages()
|
|
LOGGER.info('No detections')
|
|
|
|
# Stream results
|
|
im0 = annotator.result()
|
|
if show_vid:
|
|
cv2.imshow(str(p), im0)
|
|
cv2.waitKey(1) # 1 millisecond
|
|
|
|
# Save results (image with detections)
|
|
if save_vid:
|
|
if vid_path[i] != save_path: # new video
|
|
vid_path[i] = save_path
|
|
if isinstance(vid_writer[i], cv2.VideoWriter):
|
|
vid_writer[i].release() # release previous video writer
|
|
if vid_cap: # video
|
|
fps = vid_cap.get(cv2.CAP_PROP_FPS)
|
|
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
|
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
|
else: # stream
|
|
fps, w, h = 30, im0.shape[1], im0.shape[0]
|
|
save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos
|
|
vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
|
|
vid_writer[i].write(im0)
|
|
|
|
prev_frames[i] = curr_frames[i]
|
|
|
|
# Print results
|
|
t = tuple(x / seen * 1E3 for x in dt) # speeds per image
|
|
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS, %.1fms strong sort update per image at shape {(1, 3, *imgsz)}' % t)
|
|
if save_txt or save_vid:
|
|
s = f"\n{len(list(save_dir.glob('tracks/*.txt')))} tracks saved to {save_dir / 'tracks'}" if save_txt else ''
|
|
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
|
|
if update:
|
|
strip_optimizer(yolo_weights) # update model (to fix SourceChangeWarning)
|
|
|
|
|
|
def parse_opt():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('--yolo-weights', nargs='+', type=str, default=WEIGHTS / 'yolov5m.pt', help='model.pt path(s)')
|
|
parser.add_argument('--strong-sort-weights', type=str, default=WEIGHTS / 'osnet_x0_25_msmt17.pt')
|
|
parser.add_argument('--config-strongsort', type=str, default='strong_sort/configs/strong_sort.yaml')
|
|
parser.add_argument('--source', type=str, default='0', help='file/dir/URL/glob, 0 for webcam')
|
|
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
|
|
parser.add_argument('--conf-thres', type=float, default=0.5, help='confidence threshold')
|
|
parser.add_argument('--iou-thres', type=float, default=0.5, help='NMS IoU threshold')
|
|
parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
|
|
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
|
parser.add_argument('--show-vid', action='store_true', help='display tracking video results')
|
|
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
|
|
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
|
|
parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
|
|
parser.add_argument('--save-vid', action='store_true', help='save video tracking results')
|
|
parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
|
|
# class 0 is person, 1 is bycicle, 2 is car... 79 is oven
|
|
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3')
|
|
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
|
|
parser.add_argument('--augment', action='store_true', help='augmented inference')
|
|
parser.add_argument('--visualize', action='store_true', help='visualize features')
|
|
parser.add_argument('--update', action='store_true', help='update all models')
|
|
parser.add_argument('--project', default=ROOT / 'runs/track', help='save results to project/name')
|
|
parser.add_argument('--name', default='exp', help='save results to project/name')
|
|
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
|
|
parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
|
|
parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
|
|
parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
|
|
parser.add_argument('--hide-class', default=False, action='store_true', help='hide IDs')
|
|
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
|
|
parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
|
|
opt = parser.parse_args()
|
|
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
|
|
print_args(vars(opt))
|
|
return opt
|
|
|
|
|
|
def main(opt):
|
|
check_requirements(requirements=ROOT / 'requirements.txt', exclude=('tensorboard', 'thop'))
|
|
run(**vars(opt))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
opt = parse_opt()
|
|
main(opt) |