
Operating manual

Introduction to RAPID

Controller software IRC5
RobotWare 5.0

©
 C

op
yr

ig
ht

 2
00

7
A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

Operating manual

Introduction to RAPID
RobotWare 5.0

Document ID: 3HAC029364-001

Revision: -

©
 C

op
yr

ig
ht

 2
00

7
A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

The information in this manual is subject to change without notice and should not be
construed as a commitment by ABB. ABB assumes no responsibility for any errors that
may appear in this manual.

Except as may be expressly stated anywhere in this manual, nothing herein shall be
construed as any kind of guarantee or warranty by ABB for losses, damages to persons
or property, fitness for a specific purpose or the like.

In no event shall ABB be liable for incidental or consequential damages arising from
use of this manual and products described herein.

This manual and parts thereof must not be reproduced or copied without ABB's written
permission, and contents thereof must not be imparted to a third party nor be used for
any unauthorized purpose. Contravention will be prosecuted.

Additional copies of this manual may be obtained from ABB at its then current charge.

© Copyright 2007 ABB All rights reserved.

 ABB AB
Robotics Products

 SE-721 68 Västerås
 Sweden

Table of Contents

33HAC029364-001 Revision: -

©
 C

op
yr

ig
ht

 2
00

7
A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

Overview . 5
Product documentation, M2004 . 7
Safety . 9
Terminology . 10

1 RAPID basics 11

1.1 About RAPID . 11

1.2 RAPID data. 12
1.2.1 Variables. 12
1.2.2 Persistent variables . 13
1.2.3 Constants . 14
1.2.4 Operators . 15

1.3 Controlling the program flow. 16
1.3.1 IF THEN. 16
1.3.2 Examples with logical conditions and IF statements . 18
1.3.3 FOR loop . 19
1.3.4 WHILE loop . 20

1.4 Rules and recommendations for RAPID syntax. 21
1.4.1 General RAPID syntax rules . 21
1.4.2 Recommendations for RAPID code . 22

2 RAPID robot functionality 23

2.1 Move instructions . 23
2.1.1 MoveL instruction . 23
2.1.2 Coordinate systems. 25
2.1.3 Examples with MoveL . 26
2.1.4 Other move instructions . 28
2.1.5 Execution behavior in corner zones . 29

2.2 I/O signals . 31
2.2.1 I/O signals. 31

2.3 User interaction. 32
2.3.1 Communicate with the FlexPendant. 32

3 Structure 35

3.1 RAPID procedure . 35
3.2 Modules . 37
3.3 Structured design . 38

4 Data with multiple values 43

4.1 Arrays . 43
4.2 Composite data types . 44

5 RAPID instructions and functions 47

5.1 Instructions . 47
5.2 Functions . 48

6 What to read next 49

6.1 Where to find more information. 49

Index 51

Table of Contents

4 3HAC029364-001 Revision: -

©
 C

op
yr

ig
ht

 2
00

7
A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

 Overview

53HAC029364-001 Revision: -

©
 C

op
yr

ig
ht

 2
00

7
A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

Overview

About This Manual

This manual is intended as a first introduction to RAPID. A lot of functionality in RAPID is

left out, but the most essential parts are described so that it can be easily understood for

everybody. This manual does not make you an expert RAPID programmer, but it can help you

understand the concept of programming with RAPID. The details can always be found in the

reference manuals.

Usage

This manual should be read before starting to program. It does not contain everything you

need to know, but you need to be familiar with most things in this manual, before starting to

write a RAPID program.

This manual does not replace the educational courses in RAPID, but can complement it.

Who Should Read This Manual?

This manual is intended for someone with no previous experience in programming, e.g. a

robot operator who wants to learn how to program the robot.

Prerequisites

There are no prerequisites for this manual.

Organization of Chapters

The manual is organized in the following chapters:

References

Chapter Contents

1. RAPID basics The fundamentals of programming. This functionality is
similar in most high level programming languages.

2. RAPID robot functionality Describes the functionality that makes RAPID unique,
i.e. move instructions, I/O signals and communication
with a FlexPendant.

3. Structure Describes how to create procedures. Also contains a
brief introduction to how to apply a structured design of a
program.

4. Data with multiple values Describes arrays and complex data types.

5. RAPID instructions and
functions

A short explanation of what the RAPID instructions and
functions are.

6. What to read next Where to find more information if you want to continue
your studies of RAPID.

Reference Document Id

Technical reference manual - RAPID overview 3HAC16580-1

Technical reference manual - RAPID Instructions, Functions and
Data types

3HAC16581-1

Technical reference manual - RAPID kernel 3HAC16585-1

Operating manual - IRC5 with FlexPendant 3HAC16590-1

Continues on next page

 Overview

3HAC029364-001 Revision: -6

©
 C

op
yr

ig
ht

 2
00

7
A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

Revisions

Revision Description

- First edition

Continued

 Product documentation, M2004

73HAC029364-001 Revision: -

©
 C

op
yr

ig
ht

 2
00

7
A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

Product documentation, M2004

General

The robot documentation is divided into a number of categories. This listing is based on the

type of information contained within the documents, regardless of whether the products are

standard or optional. This means that any given delivery of robot products will not contain all

documents listed, only the ones pertaining to the equipment delivered.

However, all documents listed may be ordered from ABB. The documents listed are valid for

M2004 robot systems.

Product manuals

All hardware, robots and controllers, will be delivered with a Product manual that contains:

• Safety information

• Installation and commissioning (descriptions of mechanical installation, electrical

connections)

• Maintenance (descriptions of all required preventive maintenance procedures

including intervals)

• Repair (descriptions of all recommended repair procedures including spare parts)

• Additional procedures, if any (calibration, decommissioning)

• Reference information (article numbers for documentation referred to in Product

manual, procedures, lists of tools, safety standards)

• Part list

• Foldouts or exploded views

• Circuit diagrams

Technical reference manuals

The following manuals describe the robot software in general and contain relevant reference

information:

• RAPID Overview: An overview of the RAPID programming language.

• RAPID Instructions, Functions and Data types: Description and syntax for all

RAPID instructions, functions and data types.

• System parameters: Description of system parameters and configuration workflows.

Application manuals

Specific applications (for example software or hardware options) are described in

Application manuals. An application manual can describe one or several applications.

An application manual generally contains information about:

• The purpose of the application (what it does and when it is useful)

• What is included (for example cables, I/O boards, RAPID instructions, system

parameters, CD with PC software)

• How to use the application

• Examples of how to use the application

Continues on next page

 Product documentation, M2004

3HAC029364-001 Revision: -8

©
 C

op
yr

ig
ht

 2
00

7
A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

Operating manuals

This group of manuals is aimed at those having first hand operational contact with the robot,

that is production cell operators, programmers and trouble shooters. The group of manuals

includes:

• Emergency safety information

• Getting started - IRC5 and RobotStudio

• IRC5 with FlexPendant

• RobotStudio

• Trouble shooting - IRC5 for the controller and robot

Continued

 Safety

93HAC029364-001 Revision: -

©
 C

op
yr

ig
ht

 2
00

7
A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

Safety

Safety of personnel

A robot is heavy and extremely powerful regardless of its speed. A pause or long stop in

movement can be followed by a fast hazardous movement. Even if a pattern of movement is

predicted, a change in operation can be triggered by an external signal resulting in an

unexpected movement.

Therefore, it is important that all safety regulations are followed when entering safeguarded

space.

Safety regulations

Before beginning work with the robot, make sure you are familiar with the safety regulations

described in Operating manual - IRC5 with FlexPendant.

 Terminology

3HAC029364-001 Revision: -10

©
 C

op
yr

ig
ht

 2
00

7
A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

Terminology

About the terms

This manual is generally written for beginners, regarding both programming and robots.

However, some terms are used that may be familiar only to those with some knowledge about

programming and/or industrial robots. These terms are described in this terminology.

Terms

Term Description

FlexPendant A hand held terminal for controlling a robot system.

Robot controller The robot controller is basically a computer that controls the robot.

Syntax Rules for how a language is allowed to be written. It can be seen as the
grammar of the programming language.

The syntax of a programming language is much more strict than in
ordinary human language. Humans are intelligent and would understand
if I say "I fast run" instead of "I run fast". Computers, on the other hand,
are stupid and would not understand anything unless the syntax is
absolutely correct.

1 RAPID basics

1.1. About RAPID

113HAC029364-001 Revision: -

©
 C

op
yr

ig
ht

 2
00

7
A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

1 RAPID basics

1.1. About RAPID

What is RAPID

If you want a computer to do something, a program is required. RAPID is a programming

language for writing such a program.

The native language of computers consists of only zeros and ones. This is virtually impossible

for humans to understand. Therefore computers are taught to understand a language that is

relatively easy to understand - a high level programming language. RAPID is a high level

programming language, it uses some English words (like IF and FOR) to make it

understandable for humans.

Simple RAPID program example

Let us look at a simple example to see what a RAPID program can look like:

MODULE MainModule

VAR num length;

VAR num width;

VAR num area;

PROC main()

length := 10;

width := 5;

area := length * width;

TPWrite "The area of the rectangle is " \Num:=area;

END PROC

ENDMODULE

This program will calculate the area of a rectangle and write on the FlexPendant:

The area of the rectangle is 50

1 RAPID basics

1.2.1. Variables

3HAC029364-001 Revision: -12

©
 C

op
yr

ig
ht

 2
00

7
A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

1.2 RAPID data

1.2.1. Variables

Data types

There are many different data types in RAPID. For now, we will focus on the three general

data types:

All other data types are based on these three. If you understand them, how to perform

operations on them and how they can be combined to more complex data types, you can easily

understand all data types.

Variable characteristics

A variable contains a data value. If the program is stopped and started the variable keeps its

value, but if the program pointer is moved to main the variable data value is lost.

Declaring a variable

Declaring a variable is the way of defining a variable name and which data type it should

have. A variable is declared using the keyword VAR, according to the syntax:

VAR datatype identifier;

Example

VAR num length;

VAR string name;

VAR bool finished;

Assigning values

A value is assigned to a variable using the instruction :=

length := 10;

name := "John"

finished := TRUE;

Note that := is not an equal sign. It means that the expression to the right is passed to the

variable on the left. There can only be a variable to the left of :=

For example, the following is a correct RAPID code resulting in reg1 having the value 3:

reg1 := 2;

reg1 := reg1 + 1;

The assignment can be made at the same time as the variable declaration:

VAR num length := 10;

VAR string name := "John";

VAR bool finished := TRUE;

Data type Description

num Numerical data, can be both integer and decimal number. E.g. 10 or
3.14159.

string A text string. E.g. "This is a string". Maximum of 80 characters.

bool A boolean (logical) variable. Can only have the values TRUE or FALSE.

1 RAPID basics

1.2.2. Persistent variables

133HAC029364-001 Revision: -

©
 C

op
yr

ig
ht

 2
00

7
A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

1.2.2. Persistent variables

What is a persistent variable

A persistent variable is basically the same as an ordinary variable, but with one important

difference. A persistent variable remembers the last value it was assigned, even if the program

is stopped and started from the beginning again.

Declaring a persistent variable

A persistent variable is declared using the keyword PERS. At declaration an initial value

mustbe assigned.

PERS num nbr := 1;

PERS string string1 := "Hello";

Example

Consider the following code example:

PERS num nbr := 1;

PROC main()

nbr := 2;

ENDPROC

If this program is executed, the initial value is changed to 2. The next time the program is

executed the program code will look like this:

PERS num nbr := 2;

PROC main()

nbr := 2;

ENDPROC

1 RAPID basics

1.2.3. Constants

3HAC029364-001 Revision: -14

©
 C

op
yr

ig
ht

 2
00

7
A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

1.2.3. Constants

What is a constant?

A constant contains a value, just like a variable, but the value is always assigned at declaration

and after that the value can never be changed. The constant can be used in the program in the

same way as a variable, except that it is not allowed to assign a new value to it.

Constant declaration

The constant is declared using the keyword CONST followed by data type, identifier and

assignment of a value.

CONST num gravity := 9.81;

CONST string greating := "Hello"

Why use constants?

By using a constant instead of a variable, you can be sure that the value is not changed

somewhere in the program.

Using a constant instead of writing the value directly in the program is better if you need to

update the program with another value on the constant. Then you only have to change in one

place and can be sure you have not forgotten any occurrence of the value.

1 RAPID basics

1.2.4. Operators

153HAC029364-001 Revision: -

©
 C

op
yr

ig
ht

 2
00

7
A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

1.2.4. Operators

Numerical operators

These operators operate on the data type num and return the data type num. I.e. in the examples

below, variables reg1, reg2 and reg3 are of data type num.

Relational operators

These operators return the data type bool.

In the examples, reg1 and reg2 are data type num while flag1 is bool.

Logical operators are often used together with the IF instruction. For code examples, see

Examples with logical conditions and IF statements on page 18.

String operator

Operator Description Example

+ Addition reg1 := reg2 + reg3;

- Subtraction

Unary minus

reg1 := reg2 - reg3;

reg1 := -reg2;

* Multiplication reg1 := reg2 * reg3;

/ Division reg1 := reg2 / reg3;

Operator Description Example

= equal to flag1 := reg1 = reg2;

flag1 is TRUE if reg1 equals reg2

< less than flag1 := reg1 < reg2;

flag1 is TRUE if reg1 is less than reg2

> greater than flag1 := reg1 > reg2;

flag1 is TRUE if reg1 is greater than reg2

<= less than or equal to flag1 := reg1 <= reg2;

flag1 is TRUE if reg1 is less than or equal to
reg2

>= greater than or equal to flag1 := reg1 >= reg2;

flag1 is TRUE if reg1 is greater than or equal to
reg2

<> not equal to flag1 := reg1 <> reg2;

flag1 is TRUE if reg1 is not equal to reg2

Operator Description Example

+ String concatenation VAR string firstname := "John";

VAR string lastname := "Smith";

VAR string fullname;

fullname := firstname + " " +
lastname;

The variable fullname will contain the string
"John Smith".

1 RAPID basics

1.3.1. IF THEN

3HAC029364-001 Revision: -16

©
 C

op
yr

ig
ht

 2
00

7
A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

1.3 Controlling the program flow

1.3.1. IF THEN

About the program flow

The program examples we have seen so far are executed sequentially, from top to bottom. For

more complex programs, we may want to control which code is executed, in which order, and

how many times. First we will have a look at how to set up conditions for if a program

sequence should be executed or not.

IF

The IF instruction can be used when a set of statements only should be executed if a specified

condition is met.

If the logical condition in the IF statement is true, then the program code between the

keywords THEN and ENDIF is executed. If the condition is false, that code is not executed and

the execution continues after ENDIF.

Example

In this example the string string1 is written on the FlexPendant if it is not an empty string.

If string1 is an empty string, i.e. contains no characters, then no action is taken.

VAR string string1 := "Hello";

IF string1 <> "" THEN

TPWrite string1;

ENDIF

ELSE

An IF statement can also contain program code to be executed if the condition is false.

If the logical condition in the IF statement is true, then the program code between the

keywords THEN and ELSE is executed. If the condition is false, then the code between the

keywords ELSE and ENDIF is executed.

Example

In this example the string string1 is written on the FlexPendant if it is not an empty string.

If string1 is an empty string, then the text "The string is empty" is written.

VAR string string1 := "Hello";

IF string1 <> "" THEN

TPWrite string1;

ELSE

TPWrite "The string is empty";

ENDIF

Continues on next page

1 RAPID basics

1.3.1. IF THEN

173HAC029364-001 Revision: -

©
 C

op
yr

ig
ht

 2
00

7
A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

ELSEIF

Sometimes you have more than two alternative program sequences. You can then use ELSEIF

to set up several alternatives.

Example

In this example different texts are written depending on the value on the variable time.

VAR num time := 38.7;

IF time < 40 THEN

TPWrite "Part produced at fast rate";

ELSEIF time < 60 THEN

TPWrite "Part produced at average rate";

ELSE

TPWrite "Part produced at slow rate";

ENDIF

Note that since the first condition is true the first text will be written. The two other texts will

not be written (even though it is true that time is less than 60).

Continued

1 RAPID basics

1.3.2. Examples with logical conditions and IF statements

3HAC029364-001 Revision: -18

©
 C

op
yr

ig
ht

 2
00

7
A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

1.3.2. Examples with logical conditions and IF statements

Example

Use the IF statement to determine which text to write on the FlexPendant. Write on the

FlexPendant which part is fastest to produce.

VAR string part1 := "Shaft";

VAR num time1;

VAR string part2 := "Pipe";

VAR num time2;

PROC main()

time1 := 41.8;

time2 := 38.7;

IF time1 < time2 THEN

TPWrite part1 + " is fastest to produce";

ELSEIF time1 > time2 THEN

TPWrite part2 + " is fastest to produce";

ELSE

TPWrite part1 + " and " + part2 + " are equally fast to

produce";

ENDIF

ENDPROC

Example

If it takes more than 60 seconds to produce a part, write a message on the FlexPendant. If the

boolean variable full_speed is FALSE the message will tell the operator to increase the

robot speed. If full_speed is TRUE, the message will ask the operator to examine the reason

for the slow production.

VAR num time := 62.3;

VAR bool full_speed := TRUE;

PROC main()

IF time > 60 THEN

IF full_speed THEN

TPWrite "Examine why the production is slow";

ELSE

TPWrite "Increase robot speed for faster production";

ENDIF

ENDIF

ENDPROC

1 RAPID basics

1.3.3. FOR loop

193HAC029364-001 Revision: -

©
 C

op
yr

ig
ht

 2
00

7
A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

1.3.3. FOR loop

Repeating a code sequence

Another way of controlling the program flow is to repeat a program code sequence a number

of times.

How does the FOR loop work

The following code will repeat writing "Hello" 5 times:

FOR i FROM 1 TO 5 DO

TPWrite "Hello";

ENDFOR

The syntax of the FOR statement is:

FOR counter FROM startvalue TO endvalue DO

program code to be repeated

ENDFOR

The counter does not have to be declared, but acts as a numeric variable inside the FOR loop.

The first time the code is executed, the counter has the value specified by the startvalue. The

value of the counter is then increased by 1 for each time the code is executed. The last time

the code executes is when the counter is equal to endvalue. After that, the execution continues

with the programming code after ENDFOR.

Using the counter value

The value of the counter can be used in the FOR loop.

For example, calculating the sum of all numbers from 1 to 50 (1+2+3+...+49+50) can be

programmed like this:

VAR num sum := 0;

FOR i FROM 1 TO 50 DO

sum := sum + i;

ENDFOR

It is not allowed to assign a value to the counter in the FOR loop.

1 RAPID basics

1.3.4. WHILE loop

3HAC029364-001 Revision: -20

©
 C

op
yr

ig
ht

 2
00

7
A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

1.3.4. WHILE loop

Repeating with condition

The repeating of a code sequence can be combined with the conditional execution of the code

sequence. With the WHILE loop the program will continue repeating the code sequence as

long as the condition is true.

WHILE syntax

The syntax for the WHILE loop is:

WHILE condition DO

program code to be repeated

ENDWHILE

If the condition is false to begin with, the code sequence will never be executed. If the

condition is true, the code sequence will be executed repeatedly until the condition is no

longer true.

Example

The following program code will add numbers (1+2+3+...) until the sum reaches 100.

VAR num sum := 0;

VAR num i := 0;

WHILE sum <= 100 DO

i := i + 1;

sum := sum + i;

ENDWHILE

Do not create eternal or heavy loops without wait instruction

If the condition never becomes false the loop will continue constantly and consume vast

amount of computer power. It is allowed to write an eternal loop, but then it must contain

some waiting instruction that allows the computer to perform other tasks in the meantime.

Heavy loops (with lots of calculations and writing on the FlexPendant, without move

instructions) can require some waiting instruction even if the number of loops are limited.

WHILE TRUE DO

! Some code

...

! Wait instruction that waits for 1 second

WaitTime 1;

ENDWHILE

Note that move instructions work as waiting instructions, since the execution does not

continue until the robot has reached its target.

1 RAPID basics

1.4.1. General RAPID syntax rules

213HAC029364-001 Revision: -

©
 C

op
yr

ig
ht

 2
00

7
A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

1.4 Rules and recommendations for RAPID syntax

1.4.1. General RAPID syntax rules

Semicolon

The general rule is that each statement ends with a semicolon.

Examples

Variable declaration:

VAR num length;

Assigning values:

area := length * width;

Most instruction calls:

MoveL p10,v1000,fine,tool0;

Exceptions

Some special instructions do not end with a semicolon. Instead there are special keywords to

indicate where they end.

Example of instructions that do not end with semicolon:

These keywords are very important to create a good structure of a RAPID program. They are

thoroughly described later in this manual.

Comments

A line starting with ! will not be interpreted by the robot controller. Use this to write

comments about the code.

Example

! Calculate the area of the rectangle

area := length * width;

Instruction keyword Terminating keyword

IF ENDIF

FOR ENDFOR

WHILE ENDWHILE

PROC ENDPROC

1 RAPID basics

1.4.2. Recommendations for RAPID code

3HAC029364-001 Revision: -22

©
 C

op
yr

ig
ht

 2
00

7
A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

1.4.2. Recommendations for RAPID code

Capitalized keywords

RAPID is not case sensitive, but it is recommended that all reserved words (e.g. VAR, PROC)

are written in capital letters. For a complete list of reserved words, see Technical reference

manual - RAPID overview.

Indentations

To make the programming code easy to grasp, use indentation. Everything inside a PROC

(between PROC and ENDPROC) should be indented. Everything inside an IF-, FOR- or WHILE-

statement should be further indented.

When programming with the FlexPendant, the indentation is done automatically.

Example

VAR bool repeat;

VAR num times;

PROC main()

repeat := TRUE;

times := 3;

IF repeat THEN

FOR i FROM 1 TO times DO

TPWrite "Hello!";

ENDFOR

ENDIF

END PROC

Note that it is easy to see where the IF statement starts and ends. If you would have several

IF statements and no indentations, it would be virtually impossible to find which ENDIF

corresponds to which IF.

2 RAPID robot functionality

2.1.1. MoveL instruction

233HAC029364-001 Revision: -

©
 C

op
yr

ig
ht

 2
00

7
A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

2 RAPID robot functionality

2.1 Move instructions

2.1.1. MoveL instruction

Overview

The advantage with RAPID is that, except for having most functionality found in other high

level programming languages, it is specially designed to control robots. Most importantly,

there are instructions for making the robot move.

MoveL

A simple move instruction can look like this:

MoveL p10, v1000, fine, tool0;

where:

• MoveL is an instruction that moves the robot linearly (in a straight line) from its current

position to the specified position.

• p10 specifies the position that the robot shall move to.

• v1000 specifies that the speed of the robot shall be 1000 mm/s.

• fine specifies that the robot shall go exactly to the specified position and not cut any

corners on its way to the next position.

• tool0 specifies that it is the mounting flange at the tip of the robot that should move

to the specified position.

MoveL syntax
MoveL ToPoint Speed Zone Tool;

ToPoint

The destination point defined by a constant of data type robtarget. When programming

with the FlexPendant you can assign a robtarget value by pointing out a position with the

robot. When programming offline, it can be complicated to calculate the coordinates for a

position.

robtarget will be explained further later, in section Composite data types on page 44. For

now, let us just accept that the position x=600, y=-100, z=800 can be declared and assigned

like this:

CONST robtarget p10 := [[600, -100, 800], [1, 0, 0, 0], [0, 0, 0,

0], [9E9, 9E9, 9E9, 9E9, 9E9, 9E9]];

Speed

The speed of the movement defined by a constant of data type speeddata. There are plenty

of predefined values, such as:

Predefined speeddata Value

v5 5 mm/s

v100 100 mm/s

v1000 1000 mm/s

Continues on next page

2 RAPID robot functionality

2.1.1. MoveL instruction

3HAC029364-001 Revision: -24

©
 C

op
yr

ig
ht

 2
00

7
A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

A complete list of predefined speeddata values is found in Technical reference manual -

RAPID Instructions, Functions and Data types, section Data types and speeddata.

When using a predefined value, it should not be declared or assigned.

Zone

Specifies a corner zone defined by a constant of data type zonedata. There are many

predefined values, such as:

A complete list of predefined zonedata values is found in Technical reference manual -

RAPID Instructions, Functions and Data types, section Data types and zonedata.

When using a predefined value, it should not be declared or assigned.

The following RAPID instructions will result in the robot path shown below:

MoveL p10, v1000, z50, tool0;

MoveL p20, v1000, fine, tool0;

xx0700000358

Tool

Specifies the tool that the robot is using, defined by a persistent variable of data type

tooldata. If a welding gun, glue gun or a pen is attached to the robot, we want to program

the ToPoint for the tip of this tool. This is done automatically if a tooldata is declared,

assigned and used in the MoveL instruction.

tool0 is a predefined tool, representing the robot without any tool mounted on it, and should

not be declared or assigned. Any other tool should be declared and assigned before being

used.

vmax Maximum speed for the robot

Predefined speeddata Value

Predefined zonedata Value

fine The robot will go to exactly the specified position

z10 The robot path can cut corners when it is less than
10 mm from ToPoint.

z50 The robot path can cut corners when it is less than
50 mm from ToPoint.

Continued

2 RAPID robot functionality

2.1.2. Coordinate systems

253HAC029364-001 Revision: -

©
 C

op
yr

ig
ht

 2
00

7
A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

2.1.2. Coordinate systems

Base coordinate system

The position that a move instruction moves to is specified as coordinates in a coordinate

system. If no coordinate system is specified, the position is given relative to the robot base

coordinate system (also called base frame). The base coordinate system has its origin in the

robot base.

xx0700000397

Customized coordinate systems

Another coordinate system can be defined and used by move instructions. Which coordinate

system the move instruction shall use is specified with the optional argument \WObj.

MoveL p10, v1000, z50, tool0 \WObj:=wobj1;

For information about how to define a coordinate system, see Technical reference manual -

RAPID Instructions, Functions and Data types, section Data types and wobjdata.

For more information about coordinate systems, see Technical reference manual - RAPID

overview, section Coordinate systems.

2 RAPID robot functionality

2.1.3. Examples with MoveL

3HAC029364-001 Revision: -26

©
 C

op
yr

ig
ht

 2
00

7
A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

2.1.3. Examples with MoveL

Draw a square

A robot is holding a pen above a piece of paper on a table. We want the robot to move the tip

of the pen down to the paper and then draw a square.

xx0700000362

PERS tooldata tPen := [TRUE, [[200, 0, 30], [1, 0, 0 ,0]], [0.8,

[62, 0, 17], [1, 0, 0, 0], 0, 0, 0]];

CONST robtarget p10 := [[600, -100, 800], [0.707170, 0, 0.707170,

0], [0, 0, 0, 0], [9E9, 9E9, 9E9, 9E9, 9E9, 9E9]];

CONST robtarget p20 := [[600, 100, 800], [0.707170, 0, 0.707170,

0], [0, 0, 0, 0], [9E9, 9E9, 9E9, 9E9, 9E9, 9E9]];

CONST robtarget p30 := [[800, 100, 800], [0.707170, 0, 0.707170,

0], [0, 0, 0, 0], [9E9, 9E9, 9E9, 9E9, 9E9, 9E9]];

CONST robtarget p40 := [[800, -100, 800], [0.707170, 0, 0.707170,

0], [0, 0, 0, 0], [9E9, 9E9, 9E9, 9E9, 9E9, 9E9]];

PROC main()

MoveL p10, v200, fine, tPen;

MoveL p20, v200, fine, tPen;

MoveL p30, v200, fine, tPen;

MoveL p40, v200, fine, tPen;

MoveL p10, v200, fine, tPen;

ENDPROC

Continues on next page

2 RAPID robot functionality

2.1.3. Examples with MoveL

273HAC029364-001 Revision: -

©
 C

op
yr

ig
ht

 2
00

7
A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

Draw with corner zones

Draw the same figure as in the previous example, but with a corner zone of 20 mm at p20 and

a corner zones of 50 mm at p40.

xx0700000363

VAR tooldata tPen := ...

...

VAR robtarget p40 := ...

PROC main()

MoveL p10, v200, fine, tPen;

MoveL p20, v200, z20, tPen;

MoveL p30, v200, fine, tPen;

MoveL p40, v200, z50, tPen;

MoveL p10, v200, fine, tPen;

ENDPROC

Continued

2 RAPID robot functionality

2.1.4. Other move instructions

3HAC029364-001 Revision: -28

©
 C

op
yr

ig
ht

 2
00

7
A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

2.1.4. Other move instructions

Several move instructions

There are a number of move instructions in RAPID. The most common are MoveL, MoveJ

and MoveC.

MoveJ

MoveJ is used to move the robot quickly from one point to another when that movement does

not have to be in a straight line.

Use MoveJ to move the robot to a point in the air close to where the robot will work. A MoveL

instruction does not work if, for example, the robot base is between the current position and

the programmed position, or if the tool reorientation is too large. MoveJ can always be used

in these cases.

The syntax of MoveJ is analog with MoveL.

Example

MoveJ p10, v1000, fine, tPen;

MoveC

MoveC is used to move the robot circularly in an arc.

Example

MoveL p10, v500, fine, tPen;

MoveC p20, p30, v500, fine, tPen;

MoveL p40, v500, fine, tPen;

xx0700000364

2 RAPID robot functionality

2.1.5. Execution behavior in corner zones

293HAC029364-001 Revision: -

©
 C

op
yr

ig
ht

 2
00

7
A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

2.1.5. Execution behavior in corner zones

Why the special execution in corner zones?

The execution of a program is usually carried out in the order the statements are written.

In the following example the robot first moves to p10, then calculates the value of reg1 and

then moves to p20:

MoveL p10, v1000, fine, tool0;

reg1 := reg2 + reg3;

MoveL p20, v1000, fine, tool0;

But now look at this example:

MoveL p10, v1000, z50, tool0;

reg1 := reg2 + reg3;

MoveL p20, v1000, fine, tool0;

If the calculation of reg1 would not start until the robot was at p10, then the robot would

have to stop there and wait for the next move instruction. What actually happens is that the

code is executed ahead of the robot movement. reg1 is calculated and the robot path in the

corner zone is calculated before the robot reaches p10.

How does this affect my program

In many cases the exact time of execution does not affect the program. There are however

examples of when it does affect the program.

If you want to draw a line with a spray gun between p10 and p20, and write the program like

this:

MoveL p10, v300, z10, tspray;

! Start spraying

SetDO do1, 1;

MoveL p20, v300, z10, tspray;

! Stop spraying

SetDO do1, 0;

MoveL p30, v300, fine, tspray;

The result may look something like this:

xx0700000387

Solution

If you want to set signals in corner zones, and not use fine, then there are special instructions

for solving this, e.g. MoveLDO, TriggL and DispL. For more information about these

instructions, see Technical reference manual - RAPID Instructions, Functions and Data types.

Continues on next page

2 RAPID robot functionality

2.1.5. Execution behavior in corner zones

3HAC029364-001 Revision: -30

©
 C

op
yr

ig
ht

 2
00

7
A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

Avoid wait instructions or heavy calculations after corner zone

The robot controller can calculate the robot movement in corner paths even if there are

instructions in between the move instructions. However, if there is a wait instruction after a

move instruction with a corner zone, the robot will not be able to handle this. Use fine in the

move instruction before a wait instruction.

There is also a limitation as to how many (and complex) calculations the robot controller can

calculate in between move instructions with corner zones. This is mainly a problem when

calling procedures after a move instruction with a corner zone.

Continued

2 RAPID robot functionality

2.2.1. I/O signals

313HAC029364-001 Revision: -

©
 C

op
yr

ig
ht

 2
00

7
A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

2.2 I/O signals

2.2.1. I/O signals

About signals

Signals are used for communication with external equipment that the robot cooperates with.

Input signals are set by the external equipment and can be used in the RAPID program to

initiate when to perform something with the robot. Output signals are set by the RAPID

program and signals to the external equipment that they should do something.

Setting up signals

Signals are configured in the system parameters for the robot system. It is possible to set

customized names for the signals. They should not be declared in the RAPID program.

Digital input

A digital input signal can have the values 0 or 1. The RAPID program can read its value but

cannot set its value.

Example

If the digital input signal di1 is 1 then the robot will move.

IF di1 = 1 THEN

MoveL p10, v1000, fine, tPen;

ENDIF

Digital output

A digital output signal can have the values 0 or 1. The RAPID program can set the value for

a digital output signal, and thus affect external equipment. The value of a digital output signal

is set with the instruction SetDO.

Example

The robot has a grip tool that can be closed with the digital output signal do_grip. The robot

moves to the position where the pen is and closes the gripper. The robot then moves to where

it shall draw, now using the tool tPen.

MoveJ p0, vmax, fine, tGripper;

SetDO do_grip, 1;

MoveL p10, v1000, fine, tPen;

Other signal types

Digital signals are most common and easy to use. If a signal needs to have another value than

0 or 1, there are analog signals and groups of digital signals that can have other values. These

types of signals are not covered in this manual.

2 RAPID robot functionality

2.3.1. Communicate with the FlexPendant

3HAC029364-001 Revision: -32

©
 C

op
yr

ig
ht

 2
00

7
A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

2.3 User interaction

2.3.1. Communicate with the FlexPendant

About read and write instructions

In RAPID, there are several instructions for writing information to the robot operator, as well

as receiving input from the operator. We have already seen TPWrite in previous examples.

The only instructions we will look at here are TPWrite, TPReadFK and TPReadNum.

TPWrite

Writing a message to the operator can be made with the instruction TPWrite.

TPWrite "Now producing exhaust pipes";

xx0700000374

Write a string variable

The text string written on the FlexPendant can come from a string variable, or the written text

can be a concatenation of a string variable and another string.

VAR string product := "exhaust pipe";

! Write only the product on the FlexPendant

TPWrite product;

! Write "Producing" and the product on the FlexPendant

TPWrite "Producing " + product;

Write a numerical variable

A numerical variable can be added after the string using the optional argument \Num.

VAR num count := 13;

TPWrite "The number of produced units is: " \Num:=count;

Continues on next page

2 RAPID robot functionality

2.3.1. Communicate with the FlexPendant

333HAC029364-001 Revision: -

©
 C

op
yr

ig
ht

 2
00

7
A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

TPReadFK

When writing a RAPID program that requires the operator to make a choice, TPReadFK is a

useful instruction. It allows up to five function keys to be displayed, and the operator can

choose which one to tap. The buttons will correspond to the values 1 to 5.

VAR num answer;

TPReadFK answer, "Select which figure to draw", "Square",

"Triangle", stEmpty, stEmpty, stEmpty;

IF answer = 1 THEN

! code to draw square

ELSEIF answer = 2 THEN

! code to draw triangle

ELSE

! do nothing

ENDIF

xx0700000376

If the user selects "Square", the numeric variable answer gets the value 1. If the user selects

"Triangle", the numeric variable answer gets the value 2.

Five functions keys can be specified. If a key is not being used, write stEmpty instead of the

text on the button.

TPReadNum

TPReadNum allows the operator to write a number on the FlexPendant, rather than just

making a choice.

VAR num answer;

TPReadNum answer, "How many times shall I draw the figure?";

FOR i FROM 1 TO answer DO

! code to draw figure

ENDFOR

Continued

Continues on next page

2 RAPID robot functionality

2.3.1. Communicate with the FlexPendant

3HAC029364-001 Revision: -34

©
 C

op
yr

ig
ht

 2
00

7
A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

xx0700000378

The numeric variable answer gets the value that the operator types.

Continued

3 Structure

3.1. RAPID procedure

353HAC029364-001 Revision: -

©
 C

op
yr

ig
ht

 2
00

7
A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

3 Structure

3.1. RAPID procedure

What is a procedure

So far, all the RAPID code examples we have looked at have only executed code in the

procedure main. The execution automatically starts in the procedure named main, but there

can be several procedures.

A procedure must be declared with the keyword PROC followed by the procedure name, the

procedure arguments and the program code that the procedure should execute. A procedure

is called from another procedure (except main, which is automatically called when the

program starts).

Example

If we want to draw four squares of different sizes, we could write almost the same program

code four times. This would result in a lot of code and make the program difficult to

understand. A much more efficient way to write this program is to make a procedure that

draws the square, and let the main procedure call this procedure four times.

PERS tooldata tPen:= ...

CONST robtarget p10:= ...

PROC main()

! Call the procedure draw_square

draw_square 100;

draw_square 200;

draw_square 300;

draw_square 400;

ENDPROC

PROC draw_square(num side_size)

VAR robtarget p20;

VAR robtarget p30;

VAR robtarget p40;

! p20 is set to p10 with an offset on the y value

p20 := Offs(p10, 0, side_size, 0);

p30 := Offs(p10, side_size, side_size, 0);

p40 := Offs(p10, side_size, 0, 0);

MoveL p10, v200, fine, tPen;

MoveL p20, v200, fine, tPen;

MoveL p30, v200, fine, tPen;

MoveL p40, v200, fine, tPen;

MoveL p10, v200, fine, tPen;

ENDPROC

Continues on next page

3 Structure

3.1. RAPID procedure

3HAC029364-001 Revision: -36

©
 C

op
yr

ig
ht

 2
00

7
A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

Procedure arguments

When declaring a procedure, all arguments are declared inside parenthesis after the procedure

name. This declaration contains data type and argument name for each argument. The

argument gets its value from the procedure call and the argument acts as a variable inside the

procedure (the argument cannot be used outside its procedure).

PROC main()

my_procedure 14, "Hello", TRUE;

ENDPROC

PROC my_procedure(num nbr_times, string text, bool flag)

...

ENDPROC

Inside the procedure my_procedure above, nbr_times has the value 14, text has the

value "Hello" and flag has the value TRUE.

When calling the procedure, the order of the arguments is important to give the right value to

the right argument. No parenthesis are used in the procedure call.

Variables declared inside the procedure

Variables declared inside a procedure only exist inside that procedure. I.e. in the example

above, p10 can be used in all procedures in this module, but p20, p30 and p40 can only be

used in the procedure draw_square.

Continued

3 Structure

3.2. Modules

373HAC029364-001 Revision: -

©
 C

op
yr

ig
ht

 2
00

7
A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

3.2. Modules

About modules

A RAPID program can consist of one or several modules. Each module can contain one or

several procedures.

The small and simple programs that are shown in this manual only use one module. In a more

complex programming environment, some standard procedures, used by many different

programs, can be placed in a separate module.

Example

The module MainModule contains code that is specific for this program and specifies what

the robot should do in this particular program. The module figures_module contains

standard code that can be used by any program that wants to draw a square, triangle or circle.

MODULE MainModule

...

draw_square;

...

ENDMODULE

MODULE figures_module

PROC draw_square()

...

ENDPROC

PROC draw_triangle()

...

ENDPROC

PROC draw_circle()

...

ENDPROC

ENDMODULE

Program modules

A program module is saved with the file ending .mod, e.g. figures_module.mod.

It makes no difference for the robot controller if the program is written in several modules.

The reason to use several program modules is only to make the program easier to grasp and

easier to reuse for the programmers.

There can only be one program active on the robot controller, i.e. only one of the modules can

contain a procedure named main.

System modules

A system module is saved with the file ending .sys, e.g. system_data_module.sys.

Data and procedures that should be kept in the system even if the program is changed should

be placed in a system module. For example, if a persistent variable of type tooldata is

declared in a system module, a recalibration of the tool is preserved even if a new program is

loaded.

3 Structure

3.3. Structured design

3HAC029364-001 Revision: -38

©
 C

op
yr

ig
ht

 2
00

7
A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

3.3. Structured design

About structure

When first confronting a problem that you want to solve with a RAPID program, sit down

and analyze the problem and its components. If you start programming without first thinking

through the design, your program will be irrational. A well designed program is less likely to

contain errors and is easier for others to understand. The time spent on design is paid back

many times in testing and maintenance of the program.

Break down the problem

Follow these steps to break down the problem into manageable parts:

Example

Problem description

Create a RAPID program that can draw squares or triangles on a piece of paper. Let the

operator decide if it is a square or triangle that should be drawn next. When the robot is

finished drawing the figure the user shall be able to make the same selection again until the

operator taps on a Quit button.

When the robot has drawn 10 figures on the same paper, write a message that the paper should

be replaced and wait for the operator to tap an OK button.

Between drawings, check if di1 is 1. If it is, move to a pencil sharpener and set do1 to 1 to

start the sharpener and slowly move the pencil into the sharpener. Normally we would need

to redefine the tool since it gets shorter when it is sharpened, but we will skip that step in this

example.

Design structure

en0700000381

Action

1. Identify larger functionality. Try to split the problem into smaller pieces that will be easier
to handle.

2. Create a design structure. Draw a map of the functionality and how they relate to each
other.

3. Look at each block in the design structure. Can a block be further split into smaller
pieces? What is required to implement the block?

Continues on next page

3 Structure

3.3. Structured design

393HAC029364-001 Revision: -

©
 C

op
yr

ig
ht

 2
00

7
A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

Program code
MODULE MainModule

PERS tooldata tPen := [TRUE, [[200, 0, 30], [1, 0, 0 ,0]], [0.8,

[62, 0, 17], [1, 0, 0, 0], 0, 0, 0]];

CONST robtarget p10 := [[600, -100, 800], [0.707170, 0,

0.707170, 0], [0, 0, 0, 0], [9E9, 9E9, 9E9, 9E9, 9E9, 9E9,

9E9]];

CONST robtarget pSharp1 := [[200, 500, 850], [1, 0, 0, 0], [0,

0, 0, 0], [9E9, 9E9, 9E9, 9E9, 9E9, 9E9, 9E9]];

PERS num count := 0;

PROC main()

user_selection;

IF count >= 10 THEN

change_paper;

! Reset count

count := 0;

ENDIF

IF di=1 THEN

sharpen_pencil;

ENDIF

ENDPROC

PROC user_selection()

VAR num answer;

TPReadFK answer, "Select which figure to draw", "Square",

"Triangle", "Quit", stEmpty, stEmpty;

IF answer = 1 THEN

draw_square;

count := count + 1;

ELSEIF answer = 2 THEN

draw_triangle;

count := count + 1;

ELSE

quit;

ENDIF

ENDPROC

Continued

Continues on next page

3 Structure

3.3. Structured design

3HAC029364-001 Revision: -40

©
 C

op
yr

ig
ht

 2
00

7
A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

PROC draw_square()

VAR robtarget p20;

VAR robtarget p30;

VAR robtarget p40;

! Define points that give a square with the side 200 mm

p20 := Offs(p10, 0, 200, 0);

p30 := Offs(p10, 200, 200, 0);

p40 := Offs(p10, 200, 0, 0);

MoveL p10, v200, fine, tPen;

MoveL p20, v200, fine, tPen;

MoveL p30, v200, fine, tPen;

MoveL p40, v200, fine, tPen;

MoveL p10, v200, fine, tPen;

ENDPROC

PROC draw_triangle()

VAR robtarget p20;

VAR robtarget p30;

! Define points for the triangle

p20 := Offs(p10, 0, 200, 0);

p30 := Offs(p10, 200, 100, 0);

MoveL p10, v200, fine, tPen;

MoveL p20, v200, fine, tPen;

MoveL p30, v200, fine, tPen;

MoveL p10, v200, fine, tPen;

ENDPROC

PROC quit()

TPWrite "Good bye!"

! Terminate the program

EXIT;

ENDPROC

PROC change_paper()

VAR num answer;

TPReadFK answer, "Change the paper", "OK", stEmpty, stEmpty,

stEmpty, stEmpty;

ENDPROC

Continued

Continues on next page

3 Structure

3.3. Structured design

413HAC029364-001 Revision: -

©
 C

op
yr

ig
ht

 2
00

7
A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

PROC sharpen_pencil()

VAR robtarget pSharp2;

VAR robtarget pSharp3;

pSharp2 := Offs(pSharp1, 100, 0, 0);

pSharp3 := Offs(pSharp1, 120, 0, 0);

! Move quickly to position in front of sharpener

MoveJ pSharp1, vmax, z10, tPen;

! Place pencil in sharpener

MoveL pSharp2, v500, fine, tPen;

! Start the sharpener

SetDO do1, 1;

! Slowly move into the sharpener

MoveL pSharp3, v5, fine, tPen;

! Turn off sharpener

SetDO do1, 0;

! Move out of sharpener

MoveL pSharp1, v500, fine, tPen;

ENDPROC

ENDMODULE

Note that in production a program is normally run in continuous mode, so that when the

execution reaches the end of the main procedure it starts from the beginning again. If this is

not used, a WHILE loop can be used to repeat everything inside the main procedure.

Continued

3 Structure

3.3. Structured design

3HAC029364-001 Revision: -42

©
 C

op
yr

ig
ht

 2
00

7
A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

4 Data with multiple values

4.1. Arrays

433HAC029364-001 Revision: -

©
 C

op
yr

ig
ht

 2
00

7
A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

4 Data with multiple values

4.1. Arrays

What is an array

An array is a variable that contains more than one value. An index is used to indicate one of

the values.

Declaring an array

The declaration of an array looks like any other variable, except that the length of the array is

specified inside { }.

VAR num my_array{3};

Assigning values

An array can be assigned all its values at once. When assigning the whole array the values are

surrounded by [] and separated by commas.

my_array := [5, 10, 7];

It is also possible to assign a value to one of the elements in an array. Which element to assign

a value to is specified inside { }.

my_array{3} := 8;

Example

This example use a FOR loop and arrays to ask the operator for the estimated production time

for each part. It is a very efficient way to write code compared to having one variable for each

part and not be able to use the FOR loop.

VAR num time{3};

VAR string part{3} := ["Shaft", "Pipe", "Cylinder"];

VAR num answer;

PROC main()

FOR i FROM 1 TO 3 DO

TPReadNum answer, "Estimated time for " + part{i} + "?";

time{i} := answer;

ENDFOR

ENDPROC

4 Data with multiple values

4.2. Composite data types

3HAC029364-001 Revision: -44

©
 C

op
yr

ig
ht

 2
00

7
A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

4.2. Composite data types

What is a composite data type

A composite data type is a data type that contains more than one value. It is declared as a

normal variable but contains a predefined number of values.

pos

A simple example of a composite data type is the data type pos. It contains three numerical

values (x, y and z).

The declaration looks like a simple variable:

VAR pos pos1;

Assigning all values is done like with an array:

pos1 := [600, 100, 800];

The different components have names instead of numbers. The components in pos are named

x, y and z. The value in one component is identified with the variable name, a point and the

component name:

pos1.z := 850;

orient

The data type orient specifies the orientation of the tool. The orientation is specified by four

numerical values, named q1, q2, q3 and q4.

VAR orient orient1 := [1, 0, 0, 0];

TPWrite "The value of q1 is " \Num:=orient1.q1;

pose

A data type can be composed of other composite data types. An example of this is the data

type pose, which consists of one pos named trans and one orient named rot.

VAR pose pose1 := [[600, 100, 800], [1, 0, 0, 0]];

VAR pos pos1 := [650, 100, 850];

VAR orient orient1;

pose1.pos := pos1;

orient1 := pose1.rot;

pose1.pos.z := 875;

robtarget

robtarget is too complex a data type to explain in detail here, so we will settle for a brief

explanation.

robtarget consists of four parts:

Data type Name Description

pos trans x, y and z coordinates

orient rot Orientation

confdata robconf Specifies robot axes angles

extjoint extax Specifies positions for up to 6 additional axes. The value
is set to 9E9 where no additional axis is used.

Continues on next page

4 Data with multiple values

4.2. Composite data types

453HAC029364-001 Revision: -

©
 C

op
yr

ig
ht

 2
00

7
A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

VAR robtarget p10 := [[600, -100, 800], [0.707170, 0, 0.707170,

0], [0, 0, 0, 0], [9E9, 9E9, 9E9, 9E9, 9E9, 9E9]];

! Increase the x coordinate with 50

p10.trans.x := p10.trans.x + 50;

Detailed descriptions

Detailed descriptions of these data types and many more can be found in Technical reference

manual - RAPID Instructions, Functions and Data types, section Data types.

Continued

4 Data with multiple values

4.2. Composite data types

3HAC029364-001 Revision: -46

©
 C

op
yr

ig
ht

 2
00

7
A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

5 RAPID instructions and functions

5.1. Instructions

473HAC029364-001 Revision: -

©
 C

op
yr

ig
ht

 2
00

7
A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

5 RAPID instructions and functions

5.1. Instructions

What is an instruction

A RAPID instruction acts as a premade procedure. An instruction call looks like a procedure

call with the instruction name followed by argument values.

Some RAPID instructions are simple and could easily have been written as a procedure in

RAPID. For example the instruction Add.

Add reg1, 3;

! The same functionality could be written:

reg1 := reg1 + 3;

Other RAPID instructions perform complicated processes that could not have been

programmed without these premade instructions. For example MoveL, which may seem like

a simple instruction but in the background there are calculations of how much to move each

robot axis and how much current each motor should have. Because the program code for these

calculations is already made, all you have to do is write a simple instruction call.

MoveL p10, v1000, fine, tool0;

Detailed descriptions

Detailed descriptions of instructions can be found in Technical reference manual - RAPID

Instructions, Functions and Data types, section Instructions.

5 RAPID instructions and functions

5.2. Functions

3HAC029364-001 Revision: -48

©
 C

op
yr

ig
ht

 2
00

7
A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

5.2. Functions

What is a function

A RAPID function is similar to an instruction but returns a value.

! Calculate the cosine of reg2

reg1 : = Cos(reg2);

Since the function returns a value, the result of the function can be assigned to a variable.

The arguments in a function call are written inside parenthesis and are separated with

commas.

Include a function call in a statement

Anywhere, where a value can be used, a function returning a value of the same data type can

be used.

! Perform something if reg1 is smaller than -2 or greater than 2

IF Abs(reg1) > 2 THEN

...

! Convert the num time to string and concatenate with other strings

string1 := name + "’s time was " + NumToStr(time);

Simplify complicated calculations

A single function call can often replace several complex statements.

For example:

p20 := Offs(p10, 100, 200, 300);

can replace the following code:

p20 := p10;

p20.trans.x := p20.trans.x + 100;

p20.trans.y := p20.trans.y + 200;

p20.trans.z := p20.trans.z + 300;

Detailed descriptions

Detailed descriptions of functions can be found in Technical reference manual - RAPID

Instructions, Functions and Data types, section Functions.

6 What to read next

6.1. Where to find more information

493HAC029364-001 Revision: -

©
 C

op
yr

ig
ht

 2
00

7
A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

6 What to read next

6.1. Where to find more information

What to find in which manual

What do you want to know Where to read about it

• How to write programs on the FlexPendant

• How to load programs to the robot controller

• How to test the program

Operating manual - IRC5 with
FlexPendant, section
Programming and testing

• More detailed information about the functionality
mentioned in this manual

• What instructions are there for a specific category
(e.g. move instructions or clock functionality)

• Descriptions of more advanced functionality (e.g.
interrupts or error handling)

Technical reference manual -
RAPID overview

• Information about a specific instruction, function
or data type

Technical reference manual -
RAPID Instructions, Functions and
Data types

• Details about how the robot controller handles
different parts of RAPID

Technical reference manual -
RAPID kernel

6 What to read next

6.1. Where to find more information

3HAC029364-001 Revision: -50

©
 C

op
yr

ig
ht

 2
00

7
A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

Index

513HAC029364-001 Revision: -

©
 C

op
yr

ig
ht

 2
00

7
A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

A
arguments 36
arrays 43
assigning values 12

B
base coordinate system 25
base frame 25
bool 12

C
comments 21
communication 31, 32
complex data types 44
computer performance 20
conditional execution 16, 20
constants 14
coordinate systems 25
corner zones 27, 29

D
data types 12, 44
declaration of variables 12
design 38
digital input 31
digital output 31

E
ELSE 16
ELSEIF 17
eternal loops 20

F
FlexPendant 10, 32
FOR 19
functions 48

I
I/O signals 31
IF 16, 18
indentations 22
input signal 31
instructions 47

L
logical conditions 15, 16, 18
loop 19, 20

M
main 35
module 37
move instructions 23
MoveC 28
MoveJ 28
MoveL 23, 26

N
num 12

O
operators 15
orient 44

output signal 31

P
performance 20
pos 44
pose 44
PROC 35
procedure 35

R
RAPID functions 48
RAPID instructions 47
RAPID procedure 35
repetition 19, 20
robot controller 10
robtarget 23, 44

S
safety 9
semicolon 21
signals 31
speeddata 23
string 12
syntax 10

T
terminology 10
tooldata 24
TPReadFK 33
TPReadNum 33
TPWrite 32

V
variable declaration 12
variables 12

W
WHILE 20
WObj 25
work object 25

Z
zonedata 24

Index

52 3HAC029364-001 Revision: -

©
 C

op
yr

ig
ht

 2
00

7
A

B
B

. A
ll

ri
gh

ts
 r

es
er

ve
d.

3H
A

C
02

93
64

-0
01

, R
ev

is
io

n
-,

 e
n

ABB Robotics
S-721 68 VÄSTERÅS
SWEDEN
Telephone: +46 (0) 21 344000
Telefax: +46 (0) 21 132592

	Operating manual - Introduction to RAPID
	Table of Contents
	Overview
	About This Manual
	Usage
	Who Should Read This Manual?
	Prerequisites
	Organization of Chapters
	References
	Revisions

	Product documentation, M2004
	General
	Product manuals
	Technical reference manuals
	Application manuals
	Operating manuals

	Safety
	Safety of personnel
	Safety regulations

	Terminology
	About the terms
	Terms

	1 RAPID basics
	1.1. About RAPID
	What is RAPID
	Simple RAPID program example

	1.2 RAPID data
	1.2.1. Variables
	Data types
	Variable characteristics
	Declaring a variable
	Example

	Assigning values

	1.2.2. Persistent variables
	What is a persistent variable
	Declaring a persistent variable
	Example

	1.2.3. Constants
	What is a constant?
	Constant declaration
	Why use constants?

	1.2.4. Operators
	Numerical operators
	Relational operators
	String operator

	1.3 Controlling the program flow
	1.3.1. IF THEN
	About the program flow
	IF
	Example

	ELSE
	Example

	ELSEIF
	Example

	1.3.2. Examples with logical conditions and IF statements
	Example
	Example

	1.3.3. FOR loop
	Repeating a code sequence
	How does the FOR loop work
	Using the counter value

	1.3.4. WHILE loop
	Repeating with condition
	WHILE syntax
	Example
	Do not create eternal or heavy loops without wait instruction

	1.4 Rules and recommendations for RAPID syntax
	1.4.1. General RAPID syntax rules
	Semicolon
	Examples
	Exceptions

	Comments
	Example

	1.4.2. Recommendations for RAPID code
	Capitalized keywords
	Indentations
	Example

	2 RAPID robot functionality
	2.1 Move instructions
	2.1.1. MoveL instruction
	Overview
	MoveL
	MoveL syntax
	ToPoint
	Speed
	Zone
	Tool

	2.1.2. Coordinate systems
	Base coordinate system
	Customized coordinate systems

	2.1.3. Examples with
	Draw a square
	Draw with corner zones

	2.1.4. Other move instructions
	Several move instructions
	MoveJ
	Example

	MoveC
	Example

	2.1.5. Execution behavior in corner zones
	Why the special execution in corner zones?
	How does this affect my program
	Solution

	Avoid wait instructions or heavy calculations after corner zone

	2.2 I/O signals
	2.2.1. I/O signals
	About signals
	Setting up signals
	Digital input
	Example

	Digital output
	Example

	Other signal types

	2.3 User interaction
	2.3.1. Communicate with the
	About read and write instructions
	TPWrite
	Write a string variable
	Write a numerical variable

	TPReadFK
	TPReadNum

	3 Structure
	3.1. RAPID procedure
	What is a procedure
	Example
	Procedure arguments
	Variables declared inside the procedure

	3.2. Modules
	About modules
	Example
	Program modules
	System modules

	3.3. Structured design
	About structure
	Break down the problem
	Example
	Problem description
	Design structure
	Program code

	4 Data with multiple values
	4.1. Arrays
	What is an array
	Declaring an array
	Assigning values
	Example

	4.2. Composite data types
	What is a composite data type
	pos
	orient
	pose
	robtarget
	Detailed descriptions

	5 RAPID instructions and functions
	5.1. Instructions
	What is an instruction
	Detailed descriptions

	5.2. Functions
	What is a function
	Include a function call in a statement
	Simplify complicated calculations
	Detailed descriptions

	6 What to read next
	6.1. Where to find more information
	What to find in which manual

	Index

